A prototype 96-well plate assay for CBP was developed and validated

Background

- As the ability to improve anaerobic cellulosic microbes and to develop modified biomass feedstocks occurs, there is an increasing need for high throughput screens which replicate larger scale Consolidated Bioprocessing (CBP) fermentations.

Approach

- To develop a prototype high-throughput microplate assay to assess anaerobic microorganisms and lignocellulosic biomass in a rapid, cost-effective screen for CBP in a 96-well format with solid biomass substrates.

Outcome

- *C. thermocellum* parent Δhpt strain deconstructed Avicel to cellobiose, glucose, and generated lactic acid, formic acid, acetic acid and ethanol.
- Fermentation products, in titers and ratios similar to larger scale fermentations, confirmed the suitability of a plate-based method for *C. thermocellum* growth studies.
- *C. thermocellum* strain LL1210, with gene deletions for key central metabolic pathways, produced higher ethanol titers in the CBP plate assay for both Avicel and switchgrass when compared to the Δhpt strain.

Significance

- A prototype microplate assay system was developed that will facilitate high-throughput bioprospecting for new lignocellulosic biomass types, genetic variants and new microbial strains for biofuel production.
- This prototype will be adapted for use in the Center for Bioenergy Innovation (CBI).

Dr. Oguntimein (Morgan State University, a historically black college) was supported by the U.S. Department of Energy, Office of Science, and Office of Workforce Development for Teachers and Scientists under the Visiting Faculty Program.